U of T researchers create microchip that can detect type and severity of
cancer
Their groundbreaking work, reported
"This remarkable innovation is an indication that the age of nanomedicine is dawning," says
The researchers' new device can easily sense the signature biomarkers that indicate the presence of cancer at the cellular level, even though these biomolecules - genes that indicate aggressive or benign forms of the disease and differentiate subtypes of the cancer - are generally present only at low levels in biological samples. Analysis can be completed in 30 minutes, a vast improvement over the existing diagnostic procedures that generally take days.
"Today, it takes a room filled with computers to evaluate a clinically relevant sample of cancer biomarkers and the results aren't quickly available," says
"Our team was able to measure biomolecules on an electronic chip the size of your fingertip and analyse the sample within half an hour. The instrumentation required for this analysis can be contained within a unit the size of a BlackBerry."
Kelley, along with engineering professor
"Uniting DNA - the molecule of life - with speedy, miniaturized electronic chips is an example of cross-disciplinary convergence," says Sargent. "By working with outstanding researchers in nanomaterials, pharmaceutical sciences, and electrical engineering, we were able to demonstrate that controlled integration of nanomaterials provides a major advantage in disease detection and analysis."
The speed and accuracy provided by their device is welcome news to cancer researchers.
"We rely on the measurement of biomarkers to detect cancer and to know if treatments are working," says
The team's microchip platform has been tested on prostate cancer, as described in a paper published in ACS Nano, and head and neck cancer models. It could potentially be used to diagnose and assess other cancers, as well as infectious diseases such as HIV, MRSA and H1N1 flu.
"The system developed by the Kelley/Sargent team is a revolutionary technology that could allow us to track biomarkers that might have significant relevance to cancer, with a combination of speed, sensitivity, and accuracy not available with any current technology," says Dr. Fei-Fei Liu, a radiation oncologist at
The research was funded by the
For further information: Shana Kelley, lead investigator: (647) 500-8641 (cell) or [email protected]; Ted Sargent, lead investigator: (647) 401-6517 (cell) or [email protected]; April Kemick, media relations officer: (416) 978-0100 or [email protected]
Share this article